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The steady, spherically symmetric flow of a compressible gas is considered. The 
gas is both viscous and heat-conducting. In  the limit of very high Reynolds 
number ( = a-l, a:+ 0)  and correspondingly low pressure at  infinity, the structure 
of the whole flow field is discussed. The five regions that arise by virtue of the 
limit a: + 0 are briefly considered. Special care is given to the matching across the 
overlap domains and the first region (close to, but outside, the sonic point) and 
the fifth (where the pressure adjusts to its ambient value) are carefully examined. 
It is argued that the application of appropriate matching principles, together 
with judicious use of numerical solutions, allows an arbitrary pressure and 
temperature to be assigned to the background gas. 

1. Introduction 
Recently, considerable interest has been re-awakened in a classical problem in 

continuum gasdynamics: the three-dimensional, steady, purely radial expansion 
of a viscous heat-conducting compressible fluid into a vacuum (or near-vacuum). 
One of the aims of such a study is to find the shortcomings of a theory based on 
the Navier-Stokes equations - shortcomings which would not be expected to arise 
in the corresponding problem based on the Boltzmann equation. The flow 
structure when the Reynolds number is large is well documented (e.g. Sakurai 
1958; Freeman 1970). In the classical picture, when the pressure at infinity is 
finite, the gas expands from sonic conditions along the supersonic branch 
(Sherman 1964) of a predominantly inviscid solution, its pressure being raised 
through a shock wave onto the subsonic branch of an essentially inviscid flow. 
For low pressures, however, the departure from the supersonic inviscid branch is 
different and the distinction between the shock layer and subsonic flow blurred. 
The supersonic expansion is followed by an intermediate region where the flow is 
supersonic and where convection balances the hoop stress (Bush & Rosen 1971; 
Freeman & Kumar 1972). The region where the velocity passes from supersonic 
to subsonic values is a very diffuse shock wave with area change (called the 
' shock layer '). Unfortunately, from the analytical standpoint, the appropriate 
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scalings relevant in the shock layer show that the equations in their original 
(complete) form must be solved. 

The solution in the outer reaches of the shock layer may follow one of two 
possible solutions. Either the pressure approaches zero as r-g (where r is the radial 
distance), in which case there is a vacuum at infinity (Ladyzhenskii 1962), or the 
pressure tends towards a (small) constant value related to the flow Reynolds 
number (Freeman 1970). Both Freeman & Kumar (1972) and Bush & Rosen 
(1971) describe this structure but the emphasis in the two papers is different. 
Freeman & Kumar (1972, 1973) support their analytical conclusions for the 
problem with small, but finite, pressure with numerical results for a single value 
of the downstream temperature (which is appropriate to the case of no heat 
transfer). Bush & Rosen (1971) seek to obtain an asymptotic solution for the limit 
of zero pressure downstream and in so doing assert that the temperature a t  
infinity is necessarily determined by upstream conditions. Freeman & Kumar 
(1972,1973) assume (although their numerical results are for a single temperature) 
that the downstream temperature can be prescribed, a t  least for non-zero pres- 
sure there. Also, by the nature of their approach, they imply that this is the case 
for zero pressure downstream. Although it is doubtful whether any physical 
interpretation can be applied to the Navier-Stokes equations in the zero-pressure 
limit, it  seems plausible that, at least for non-zero pressure, the ‘background gas’ 
(in kinetic-theory terms) should determine the downstream temperature. 

The main purpose of this paper is to try and resolve the points indicated above. 
In  order t o  apply appropriate boundary conditions, a complete study of the flow 
field both upstream and downstream is required. In  particular, an analysis of the 
structure in the neighbourhood of the sonic point must be made. It is shown that 
it is possible to construct an asymptotic solution (as the Reynolds number 
approaches infinity) in which both the pressure and temperature? at infinity are 
given. These boundary data, together with the existence of a sonic radius, suffice 
to define the complete solution. 

The discussion will be based on the (complementary) techniques of asymptotic 
expansion and numerical integration. The structure of the flow field from the 
sonic radius to infinity is briefly outlined and the pertinent details relating to 
(i) the admissible boundary data and (ii) the functional behaviour that can be 
tested numerically are extracted. A number of numerical results are also 
discussed. 

2. Formulation of the problem 

perfect gas may be written in non-dimensional form (Ladyzhenskii 1962) as 
The equations for the purely radial steady flow of a viscous heat-conducting 

p = X = q w .  (3) 
At times it will be more convenient to use the total heat transfer at infinity. 
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The pressure P, temperature T ,  velocity u and distance r have been redefined 
according to 

where T, is the stagnation temperature,i m is the mass flow rate and rl is a charac- 
teristic length. [r, may be the sonic radius r*, although a more convenient choice 
will be made later.] The primes denote derivatives with respect to x and we wish 
to construct a solution for xo 2 x 2 0, where xo(a) = rl/r*.$ 

Equations (1) and (2) are, respectively, the momentum and energy equations 
after the pressure P and density p have been eliminated by making use of the 
continuity equation and equation of state for the gas, i.e. 

pur2 = m = constant, P = pRT, 

where R is the gas constant. The viscosity has been assumed proportional to T” 
(0 < w < 1) and the Prandtl number is constant. The inverse Reynolds number 
is denoted by a, where 

andp, is the viscosity evaluated at  T = T,. Finally, y ( > 1) is the (constant) ratio 
of the specific heats. Bush & Rosen (1971) introduce two viscosity coefficients in 
their formulation but as this introduces no new features in the subsequent 
analysis this additional complication is avoided here. 

The problem discussed here is the solution of (1) and (2) in the limit a -+ 0,  with 
the boundary conditions 

a = Q(p1r11m) 

u = (yRT)& at r = r*, (4) 

T-+ constant, P-tconstant as r+co, ( 5 )  

although, in passing, solutions are given also for P-+ 0 as r+  00, but again with 
arbitrary T (as r-tco). In  some cases, it  will be convenient to replace the 
temperature condition by 

r2To dT/dr -t constant as r -t co, (6) 

w = 84 at x = xo(a). (7) 

which essentially prescribes the total heat transfer at infinity. In  non-dimensional 
variables, (4) becomes 

For an appropriately small pressure at infinity, (5) and (6) are taken as 

p+pman, n 2  2, as x- tO ,  

with either 8+8, as x - to  

or 8 W  -+ qm 01-1 as x -+ 0. 

The heat transfer is seen to be large (as a+ 0). pa,  8, and qm will be assumed 
independent of a. 

t Defined as that where u = rZuduldr = r2dT/dr = 0. 
3 Note that, by virtue of the non-dimensionalization, zo becomes a free parameter which 

is to  be assigned, e.g. zo = 1 or zo = zo(a). 
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FIGURE 1. Sketch of the pressure giving the order of magnitude of p ,  the sizes of the various 
regions and the corresponding notation. Case sketched here is for n > 2yp > 2. 

The analysis is presented for arbitrary p ,  and 8, (or q,) with n > 2. The case 
n < 2 corresponds to the classical Laval-nozzle problem, which is extensively 
described in the literature and will not be discussed here. The solution when n = 2 
is described by Freeman & Kumar (1972), and for n > 2 the results of Freeman & 
Kumar (1973) are relevant by virtue of their limit W0+m (which corresponds 
here to the limiting process p ,  -+ 0 with n = 2 ) ;  however, these studies were only 
for 8 = $(y + 1). For p - a2p,x* as x-+ 0 the reader is referred to Bush & Rosen 
(1 97 1). Moreover, it  is argued here, on the basis of numerical solutions, that 8, may 
be freely chosen and is not determined from upstream as suggested in that paper. 

In  the next few short sections the various asymptotic regions of the flow field, 
together with the required matching, are outlined. For convenience, the basic 
expansion (where x = O(1)) is used as the starting point and the regions both 
upstream and downstream predicted from this. After consideration of the solution 
in the neighbourhood of the sonic radius, the sections discuss sequentially the 
solutions as x -+ 0. The section headings indicate the magnitude of x and reference 
to figure 1, where the various regions are sketched for one particular range of 
parameters, may be informative. 

3. Basic expansion: x = O(1) 

expanded as 

which yields to leading order 

The form of the equations suggests that the independent variables may be 

8 = 8, +a81 + o(a),  w = wo + awl + o(a),  (11) 
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It may be observed that the introduction of terms intermediate between 8, and 
O1 or wo and w1 in (1 1) will produce only perturbations of the inviscid solutions 
given by (1 2 ) .  In 5 4 it is shown that such terms can be eliminated by a suitable 
resealing of the variables. The sonic condition is 

wo = 84 at x = x,(o) 

and xo(0) is set equal to unity, so that rl is taken as the inviscid sonic radius (that 
for a = 0) and is presupposed to be the given length scale for the problem. Thus 
from (12 b )  it follows that 

and integration of (12 a )  [with the aid of (12 b ) ]  gives the entropy equation 

w o = O 0 =  1 at x =  1, (13)  

(14) w eli(y-1) = x2* 

The solution of (12b) and (14) is well known to possess two branches: one sub- 
sonic and the other supersonic. Of interest here is the supersonic branch, along 
which 

0 0  

The equations for wl(x) and O1(x) may be written down and formally solved. 
However, it  is expedient to insert the asymptotic behaviour of wo and 8, as 
x+O and x+l [begun in (15) and (16)] and construct the corresponding 
behaviour for w1 and el. This indicates that the expansions (1 1) are not uniformly 
valid in both the limits x+O and x+1. In  particular, the regions of non- 
uniformity are obtained as 

ax2~(~--1)--1 = O(xZ(y-1)) or x = O ( ~ P )  as x-+o (17)  

and 74 = O(a7-1) or 7 = O(a%) as 7+0,  (18) 

where ,u = [1 +2(y- 1) ( 1  -w)]-l  ( <  1). The result (is), which gives t~he size of 
the region in the neighbourhood of the sonic point ( x  = i, a+ 0), is that deduced 
by Sakurai (1 958). 

4. Neighbourhood of the sonic point : 1 - x = O(a3) 

are defined as 
Using the scaling of (1 8) and the form of the expansions as 7 -+ 0, the variables 

< = ~ a - 8  = (1  - x) a-9, so that xo(a) = 1 - a",,(a) = 1 + O(a9); 

8 N 1 + a+b0 + a*$l; w N 1 + afv, + a*vl. 

Now, the leading-order terms from ( I )  and ( 2 )  do not give two independent 
equations and so going to the next order in $ and v (i.e. O(a*)) yields 

q50+(y-i)vo = 0, avh-bvi+c-c0 = 0, (19a, b)  
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where a = &[1+ (3/4a) (y-  l)], b = icy+ 1) and co is an arbitrary constant, 
Equation (19b), with co = 0,  is the Ricatti equation given by Sakurai (1958).1 
The matching condition is 

with the boundary condition [from (7)] 

where, as previously noted, xo = 1 -afCo(a). Now, (21) and (19a) together imply 
that vo = q50 = 0 at C: = go(()) .  

vo 2(y- l)-tg4 as C+oo, (20) 

vrJ = 8$0 a t  6 =  6(0), (21) 

The solution to (19b) may be written in terms of Airy functions as 

go = -(Ai'([)+cBi'([))/(Ai([)+cBi(g)), (22) 
where c = @/a2)# (6- c0), E0 = (b2/a)&vo and c is an arbitrary constant. The solu- 
tion which matches with the supersonic branch [i.e. (ZO)] is given by c = 0. The 
termination of the solutions (22) (with c = 0 )  due to poles a t  zeros of Ai ( E )  is of 
no importance in this analysis. Since the first zero of Ai' (g) occurs before that 
of Ai (c), in the sense of decreasing c, the quantity Q(0) - co can be chosen to 
coincide with the first zero of Ai' (c).$ Further, if c0 4 0, then expansion of ( 2 2 ) ,  
as g+03, shows that terms O ( d )  must occur in the basic expansion (1  1).  Hence it 
is convenient to choose E0 = 0. There is, correspondingly, a choice of all higher- 
order terms such that the simplest asymptotic representation may be con- 
structed. Thus, with go = 0, 

c0( 0) = - (a2/b)ial, 
( -a, ( < 0)  being the first zero), which implies that [o(0)  < 6 < 03 and thus the 
position of the viscous sonic radius may be deduced from 

(as a function of rl and a) .  
From the numerical integrations (presented later) it is possible to extract the 

value of a for a given run. Now, by making use of the next terms in the expansions 

where Ai' ( -a,) = 0 

%,(a) = 1 + af(a2/b)"al + . . . (23) 

are obtained at the sonic radius ( g  = b ( 0 ) )  and, if numerical accuracy permits, 
may be used as a check on the solution in the neighbourhood of r = r* . 

5. Transition region: x = O(ap) 

x = O(ap) [see (17)] and so 
Returning to the expansion for x = O ( l ) ,  a non-uniformity is deduced where 

(25 )  
= a p x ,  e = a, w-(-) y i - 1  =l =aAW 

t The analysis as presented is due to Dr R. E. Grundy (1968, private communication). 

$ In fact, the first zero of Ai'(%) is at - 2.34. 
However, he considered C ( 0 )  = 0. Similar results have been obtained by Collin_s (1969). 

z - 1.02 ; the first zero of Ai(a is at 5 
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are introduced, where h = 2(y- 1)p .  Substituting into (1) and (2), solving for 
the leading-order terms in 0 and W ,  and matching with (15) for X-tco yields 

and 

(see Bush & Rosen 1971; Freeman & Kumar 1972). It may be noted in passing 
that if w = 1 then p = 1, and the solution is exponential. 

The result (26) affords a particularly useful test that may be exploited in 
numerical computations. It is found that 0, possesses a minimum such that 

0,,,, = 5.5870165 at Xmin = 2.1681222 (28) 

for y = $ and w = 8. Now, since the computations are performed in terms of 
8 = @/aA and Y = x/a = afl-1X (introduced in 3 6) the position of the minimum 
and the minimum value itself both yield values for a (as a+O); these may be 
compared. 

The asymptotic expansions begun in (25)-(27) are not uniformly valid as 
X + 0. Inspection of these solutions immediately places the non-uniformity 
where ahX--l/(l-u) = O(1) or X = O(al-fl) or x = O(a).  

6. Shock-layer region: x = O(a) 

unity. Thus for this region the variables are 
The scalings pertinent here are evidently just that w and 6 are both of order 

x = aY, w = 8, 0 = 8, (29) 

where the tildes denote the (non-dimensional) velocity and temperature written 
as functions of Y. Now, a cursory glance at (1) and (2) indicates that the applica- 
tion of (29) merely yields the full Navier-Stokes equations in a scaled form. 
Naively, it  might be argued that the worst possible situation has arisen: to pro- 
ceed the complete (parameterless) problem must be solved. Of course, this is 
strictly not the case - the boundary (i.e. matching) conditions as Y + co are those 
from (26) and (27) as X - t  0 and not the sonic conditions a t  x = xo. For reference, 
the equations are 

and it is in this form that the problem is integrated numerically (see 39). 

expanded according to 
Examination of (26) and (27) shows that in this region the variables must be 

8 = 80+a(1-fl)/f181+..., 6 = 8 0 +a(l-fl)'flG,+... (32) 
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to ensure matching as Y-+co. The variables Q0 and Go satisfy (30) and (31) and, 
as such, complete (analytical) solutions for these leading-order terms are not 
available. However, assuming the existence of appropriate solutions, asymptotic 
solutions of (30) and (31) for Y + cc and Y -+ 0 may be constructed. The procedure 
in the case Y+cc merely confirms that the solutions match with (26) and (27) 
(for x-+ 0) (see, for example, Bush & Rosen 1971). In  the limit Y .+ 0 the asymp- 
totic behaviour of go and Go can now be presented in detail. 

First, it is assumed that go and 8, possess expansions of the form 

Q0 - 8, + c,  ~ “ 1 ,  8o N d, YP1 as Y + 0, (33) 

whence the following values may be deduced for the constants cl, d,, a, and PI 
(for some 8,). 

Case (i). If 6, + &(y + I),  a solution is 

a, = 1, p1 = 2, c, = +u&y[&(y + 1) - 84, (34) 

a, = 4, p, = 2, c, = -u (y - l )@.  (35) 

(36) 

whereas if 8, = &(y + l),  a solution is 

For either of these two solutions the pressure becomes [from (3) and (S)] 

p N 8,a2Y2/dl YP1 = a28,/dl, 

which is constant. This is consistent only if n = 2 and d, = 8,/p,. 
Case (ii). For any 0, a solution is 

The pressure is now p - a2(8,/dl) Yg. (38) 

[It is noted that &O) = 0 if 8 = y(y + 1)/2(2y- l).] 
It is observed that in case (i) the constant d, is prescribed in terms ofp, and 8,. 

For case (ii), d, is completely determined in terms of alone and the pressure 
decays like Y* as Y -+ 0 (Ladyzhenskii 1962). Also, in case (i), if 8, = &(r+ 1) then 
the complete flow becomes isentropic (as a-+O) since this temperature corre- 
sponds to the subsonic branch of (12b) and (14). Now, a crucial question is 
whether solutions exist to, say, the zero-pressure problem of Ladyzhenskii for 
arbitrary 8,. It is not clear from Ladyzhenskii’s original paper whether it was 
intended that 8, should be regarded as arbitrarily prescribed or not, but the 
numerical solutions given later would indicate that this is the case. 

The particular interest here is gas entering a very low pressure region where 
p 3 anp, (n 2 2 ) .  It is thus evident that the relevant solution in the shock-layer 
region (as Y -+ 0)  is case (ii) [(37) and (38)], where the pressure may decrease along 
the zero-pressure Ladyzhenskii solution until it is as low as O(an). This would 
indicate the limit of validity of the shock-layer solution and occurs when 

a2Y% = O(an) or Y = O(aQ(n-2)), (39) 

which implies that x = O(a@n-l)), n > 2. 
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7. Pressure-adjustment region: x = O(a*(2n-1)) 

(39) suggest the new variables 2, V and t ,  where 
From the asymptotic behaviour in (33), and using (37), the scalings given in 

Y = asz, 25 = agsv, 8-& = ast (40) 

and S = g(n - 2) ( > 0). [These scalings are equivalent to those used by Freeman 
& Kumar (1973) when their Wg% is interpreted as as.] Substituting (40) into (30) 
and (31) and retaining the leading-order terms as a+O yields 

(42) 8 , - * ( y + 1 ) + 8 %  [?-,t;+(y-l)v,v;] 3 + ( y - I ) z  0% v; = 0 

(where the zero subscripts denote the leading-order terms in V and t ) .  Equation 
(41) for V,(Z), which is a balance between viscous and pressure forces, is given in 
Bush & Rosen (1971) (for y = I). The solution to this equation may be written as 

where A and B are arbitrary constants. Now q(2) matches with (33) and (37), 
as Z+m, if B = 0. The pressure condition gives 

8, a2@+1) 2 2  

p a&?(z2/A) - - anpm as Z+O, 
whence A = pm/6,. 

Integration of (42) gives the temperature perturbation as 

where C is an arbitrary constant, d, is given in (37) and 

lo = [Om - +(y + l)] 8;u. (45) 

It is straightforward to confirm that (44), expanded for Z+ co, matches exactly 
with (33) and (37) for any C. In  fact, C must match to higher-order terms in the 
expansion of (30) and (31). 

Before examining the implications for the shock-layer region, it is convenient 
to obtain more information about the expansions here. Setting 

v = v, +as v, + O(d), t = t, + ast, + o ( d )  (46) 

and considering the forms taken by V,(Z) and t l(Z) as Z+ a3 yields 

Y +dm) Z...] (48) 
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g - - - q & ' - - 2 W  [4a~,(~8,+1)+(y+l)y-~(9+4a8,(2+&~)}].  1 
Finally, the temperature as Z - t O  (that is, at  infinity) is given by 

8. Discussion of asymptotic results 
From the behaviour of the solution in the pressure-adjustment region it would 

appear that both the pressure and temperature boundary conditions a t  Z = 0 
are necessary to specify the solution. However, it  is also essential for the success 
of this formulation that the requirement for matching with the shock-layer 
region does not involve further restrictions on the form of the solution. Unfortu- 
nately, as analytic solutions to (30) and (31) are not available the behaviour of 
the various terms as Y -+ 0 is all that can be used. 

The double requirement of matching the shock-layer region both upstream 
and downstream implies the presence of the appropriate powers of a. To match 
upstream, terms of the form arn(l-fi)~~' [cf. (32 ) ]  are necessary; to match to the 
downstream behaviour terms of the form a p t  are required. Thus the expansion 
in the shock-layer region, and hence all other regions, must ultimately include 
two sequences in a: one generated essentially by the near-field (or sonic-point) 
behaviour and the other by the far-field behaviour. It is assumed that these two 
sequences are independent? since it is possible to construct asymptotic solutions 
for any n ( > 2 )  (i.e. any as). In particular, writing the pressure-adjustment solu- 
tion [(47) and (48)] in terms of the shock-layer variable Y shows that ( 3 2 )  must 

be rewritten as z 
B" N J0 + a(l--iU)k9' + . . . + awl + atse", + . . . , (51) 

and similarly for G( Y ;  a). Now, since (30) and (31) do not involve a,  the equations 
for the pairs of terms (Ol, Gl), (&, G1) and (e",, g,) are identical. 

By making use of the asymptotic behaviour of go and Go as Y+O, the 
expansions become 

1 4a - 0 -  f7,+-Om8"1-wY+g1Y2+... +... 
[ 3  

+wBm) Y +  ...I +a@[j ,Y-h+ ...I+... ( 5 2 )  

+at'[ j' Y-'+ ...I + ..., (53) 
4adl(y - 1) 

t Note, however, that terms involving products of the two sequences will necessarily 
also occur. 
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where only the terms in aqa have been written down. The constants h, andj, are 
not determined and a,, g,, d, and fi are defined earlier. The leading-order terms 

in (& G,), (s",, 6,) and (Bz2, g2) may be chosen from three possibilities. Here, the 
two choices which permit O(as)  and O(a@) terms to match with (47) and (48) are 
used. Note, however, that the balance which gives rise to  these leading terms 
(as Y --f 0) comes only from the homogeneous equations and since these are linear 
the undetermined constants h, and j, are just the arbitrary constants associated 
with the solution. Thus the constants h, andj, are chosen such that matching is 
fulfilled. This leads directly to 

72, = c, j, = - $ c r ( y -  1) d:(pm/om). (54) 
The problem, in terms of matched asymptotic expansions, has now been out- 

lined and it remains only to impose the boundary conditions at infinity (2 = 0). 
In  fact, the pressure condition ( p  N anpm) has already been incorporated in (43) 
by the appropriate choice of A .  For the application of the thermal condition 
equation (50) is employed. If the temperature is given [see (9)] then it is required 
that 

and the temperature reached in the shock-layer solution using the zero-pressure 
Ladyzhenskii (1962) expansion is just the arbitrary value at infinity. If, on the 
other hand, the heat transfer is given, thkn 

whence, for zero heat transfer, om = +(y + 1). 
&,( - (4a/3) &) = qm or om = *(? + 1) - (3/4g) qrni (56) 

9. Numerical solutions and conclusions 
It has already been pointed out that, in the shock-layer region, it is necessary 

to obtain a solution of the complete equations of motion (30) and (31) to define 
the structure in that particular region. This is, however, simpler than finding 
a solution to the complete problem since only matching conditions must be 
satisfied. Since, to first order as a+ 0, the Ladyzhenskii solution [(33) with (37)] 
gives a complete solution which is independent of the pressure at  infinity, this 
parameter is eliminated from this calculation. However, it is obvious from the 
Ladyzhenskii expansion (33) that the asymptotic downstream behavionr depends 
critically on the assumed value of om. Now, it is only possible to examine the 
asymptotic solutions upstream and downstream in the shock-layer region and 
thus it is not apparent whether 0, is a consequence of the upstream matching 
condition or not. Although it could be argued from physical considerations that 
it might be determined from the temperature of the background gas, the limita- 
tions of the Navier-Stokes equations themselves (for small pressures) make this 
assertion highly questionable. The only practical way of deciding whether 8, is 
indeed freely available is to construct numerical solutions starting with the 
Ladyzhenskii expansion (for a given value of om) and to observe if upstream 
conditions can be satisfied. 

Numerical solution of the Navier-Stokes equations for spherically symmetric 
flow has been carried out by Gusev & Zhbakova (1969) and Rebrov & 
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FIGURE 2. Numerjcal solutions obtained for Om = t, a = 0.000434; 6, = +$, a = 
0.000000535 and 8, = %, a = 0.00175. ---, extension based on the theoretical be- 
haviour. 
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Chekmaryov (1970). Owing to  specific assumptions about the viscosity depend- 
ence these results are not suitable for comparison with the present theory but 
their techniques were developed by Freeman & Kumar (1972), who made use of 
the asymptotic expansion appropriate to a small (but non-zero) pressure down- 
stream. In that analysis it was found that solutions could be constructed only if 
very accurate starting values were obtained by using a large number of terms in 
the asymptotic expansions. A similar approach was tried with the Ladyzhenskii 
expansion but this failed owing to the appearance of a logarithmic term in the 
velocity expansion. This term, which behaves like Y% In Y as Y -+ 0, is associated 
with the solution for finite pressure and corresponds to the existence of two 
possible types of solution.? Such a behaviour then requires that the coefficient 
of Y% be arbitrary and this, together with the logarithmic term, produces an 
extremely complicated sequence. Consequently, this appears to rule out any 
attempt to construct many terms in the expansion even if, as in the previous 
exercise, the computer were programmed to do this. However, it had been 
noticed that the procedure of calculating a large number of terms in the asymp- 
totic expansion only served to give an even closer relationship between the values 
of the derivatives calculated from the equations and those found by using the 
asymptotic expansion. This suggested that it might be feasible to obtain a satis- 
factory solution by a ‘trial and error’ choice of the coefficient of Y%. This proved 

t This type of behaviour is, of course, very familiar in second-order linear differential 
equations when the expansion of one solution of the homogeneous equation has a first term 
corresponding to a term in the expansion of the other. It is, however, surprising that a 
similar result appears in this highly nonlinear problem, where no obvious relation exists 
between the two types of solution. 
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possible although it was necessary to obtain very accurate values of this coeB- 
cient (e.g. to within 1 part in 108) if the integrations were to proceed successfully 
(and not lead to physically unrealistic situations). 

The solutions obtained for different values of om are shown in figure 2 .  Here the 
temperature is plotted against the scaled variable Y on a log-log plot. Since the 
integrations start at  infinity, the inverse Reynolds number a is not known 
apriori. It may, however, be computed from the minimum value of the tempera- 
ture [from (ZS)] or the value of Y at which sonic conditions are achieved. In  fact, 
these values agree to within a fraction of a per cent for all the solutions ! Unfortu- 
nately, the values of a for the various solutions are widely different. These values 
can be adjusted by judicious but tedious variation of the starting conditions. 
A similar procedure was adopted in Freeman & Kumar (1  972) and the results are 
shown in their figure 3. In  view ofthe large amount of computer time used in these 
calculations it was not thought worthwhile to attempt an adjustment of a in the 
present work. As a number of solutions has been obtained for a wide range of 
downstream temperatures (even if the values of a are not comparable), there 
seems to be little doubt that solutions can be obtained for any value of this 
temperature. Consequently it is possible to match to any downstream pressure 
O(a2), or smaller, through the pressure-adjustment region. 

The various regions described earlier can easily be identified in figure 2 :  from 
the downstream end these are the shock layer, the transition region, inviscid 
region and finally the sonic transition region. Also, the temperatures are plotted 
in figure 3 on a linear basis. It is evident that various starting temperatures om 
at Y = 0 lead to similar results: in particular the approach to the shock-layer 
region (where 8 is very small) depends only weakly on either dm or a. 

Since detailed results were available near the sonic point it was possible to 
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FIGURE 4. Behaviour near the sonic point from numerical solutions. @ , O m  = Q, 
a = 0.00175; x , 8, = 2, a! = 0.000434. For definition of the variables see $4. 

verify the behaviour predicted by (22) and (24) in this region (as shown in 
figure 4). It is seen that the appropriate scaling, for different values of a, enables 
the solutions to collapse onto the same curve. 

In  conclusion, this paper shows how the flow can expand from sonic conditions, 
pass through a supersonic-subsonic transition and eventually reach an arbitrary 
(low) pressure and, apparently, arbitrarily prescribed temperature at infinity. 
Of course, this has been made possible only by permitting the Reynolds number 
to be very large and by an extensive use of numerical integrations. With these 
restrictions, it is reasonably certain that the behaviour of the system of 
differential equations predicted above is correct. 
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